An Improved Method of Total Synthesis of 2-Methoxypodocarpane-8,11,13-triene

Qiang XIAO ${ }^{2}$, Yu Xin CUI ${ }^{1}$, Peng Fei TU ${ }^{1}$ *
${ }^{1}$ Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100083
${ }^{2}$ Department of Chemistry, Lanzhou University, Lanzhou 730000

Abstract

Methoxypodocarpane-8,11,13-triene 1, the key intermediate in the synthesis of some important diterpenes, was synthesized in an efficient way, which has the characteristics of short route, simple operation and high yield.

Keywords: Synthesis, diterpenes, 12-methoxypodocarpane-8,11,13-triene, cyclization.

12-Methoxypodocarpane-8,11,13-triene $\mathbf{1}$ is the key intermediate for synthesis of some important diterpenoids, such as Ferruginol $\mathbf{2}^{1}$, 6,7-dehydroferruginol $\mathbf{3}^{1}$, sugiol $\mathbf{4}^{2}$, 5 -epixanthoperol 5^{3} etc. These compounds posses significant bioactivities, such as fungicidal ${ }^{1}$, antimicrobial ${ }^{1}$ and cytotoxic activity ${ }^{2}$. Some methods of synthesis of the title compound 1 were reported, but the process is laborious and the yield is low. In connection with our effort to discovery and develop new anti-HIV drugs, a number of analogs of the compound $\mathbf{1}$ were needed to evaluate their structure-active relationship. Here we report a facile stereoselective synthetic route to compound 1.

Scheme 1

2

3

4

5

The synthetic route is illustrated in scheme 2. Compound 7 was easy obtained from unexpensive material $\mathbf{6}$ in 95% yield. The bromination of 7 was carried out according to literature method ${ }^{5}$ with 85% yield. In the course of synthesis of compound 11, it was found that benzene was more proper than ether, which was always used in the literature ${ }^{6}$. When using benzene as solvent, $\mathbf{1 1}$ was obtained in 92% yield. After alkylation of $\mathbf{8}$ and 11, without separation, the mixture was directly hydrolyzed in refluxing EtOH with KOH to give $\mathbf{1 2}$ in 75% overall yield. $\mathbf{1 2}$ was added with excess
$\mathrm{CH}_{3} \mathrm{Li}$, then the mixture was directly refluxed with PPA^{4} at $80-90^{\circ} \mathrm{C}$ for 2 h to give the title compounds $\mathbf{1}^{7}$ in 42% overall yield. The stereoselectivity of cyclization is 100% trans, if there is A / B cis isomer, the chemical shift of $4 \alpha-\mathrm{CH}_{3}$ shielded by the aromatic group is about $0.54 \mathrm{ppm}^{8}$, which was not found. The final stage work of coverting $\mathbf{1}$ to other diterpenes is in progress.

Reagents and conditions: (a) Mg, THF, ethylene oxide, 95%; (b) $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{Br}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 85 \%$; (c) NaH , $\mathrm{C}_{6} \mathrm{H}_{6}$, reflux, 92%; (d) i) NaH , THF; ii) $\mathrm{EtOH} / \mathrm{KOH} / \mathrm{H}_{2} \mathrm{O}$, reflux, 75%; (e) i) excess $\mathrm{CH}_{3} \mathrm{Li}$, THF; ii)PPA, $80-90^{\circ} \mathrm{C}, 42 \%$.

Acknowledgment

This work received financial support from the National Natural Science Foundation of China.

References and Note

1. a) J. B. Bredenberg, Acta. Chem. Scand., 1957, 11, 932.
b) H. Fukui, K. Koshimizu, H. Egawa, Agric. Biol. Chem., 1978, 42, 1419.
2. S. M. Kupchan, A. Karim, C. Marcks, J. Org. Chem., 1969, 34, 3912.
3. J. B. Bredenberg, J. Gripenberg, Acta. Chem. Scand., 1954, 8, 1728.
4. a) F. E. King, T. J. King, J. G.Toplis, Chem. Ind., 1954, 108.
b) F. E. King, T. J. King, J. G. Toplis, J. Chem. Soc., 1957, 573.
5. C. Marschner, G. Penn, H. Griengl, Tetrahedron, 1993, 49, 5067.
6. J. D. White, R. W. Skeean, G. L. Tramell, J. Org. Chem., 1985, 50, 1939.
7. Spectra data of 1: $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.93(\mathrm{~s}, 6 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.10-2.90(\mathrm{~m}, 11 \mathrm{H}), 3.77$ $(\mathrm{s}, 3 \mathrm{H}), 6.60(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0,2.0 \mathrm{~Hz}), 6.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}), 6.90(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz})$; EI-MS $(\mathrm{m} / z): 258\left(\mathrm{M}^{+}, 100\right), 243(73), 187(65), 174(73), 161(85), 91$ (18); IR (film, $\left.\mathrm{cm}^{-1}\right)$: 2928, 1578, 1462,1360,1244.
8. B. R. Davis, M. G. Hinds, S. J. Johnson, Aust. J. Chem., 1985, 38, 1815.

Received 1 September, 2000

